ABSTRACT

In this paper, a low power current mode double edge triggered flip flop with enable design is presented. A simple current mode conditional gate transmitter design is used to reduce the circuit complexity. The current mode conditional gate transmitter is combined with the current mode double edge triggered flip flop with enable (CMDEFTF) to provide one-to-many signalling which is very useful for clock distribution network. In this paper we show that when current-mode (CM) clock distribution network is used, average power can be reduced when compared with voltage-mode (VM) clocks.

Keywords- Clock Distribution Network, Current-Mode, Voltage-Mode.

I. INTRODUCTION

Most of the present-day systems are clock based or synchronous. These systems are built from systems, where each subsystem is a finite state machine. The subsystems changes from one state to another depending on a global clock signal which is provided by the clock distribution network. The function of clock distribution network is to synchronize millions/ billions of separate elements. The clock distribution network consumes 70% of total chip power [11].

The state updates within the subsystems are carried out on the rising or falling edge of the clock signal. A clock based system can operate correctly only if all parts of the system gets the clock at the same time, which can happen only if the delay on the clock wire is negligible. The factors influencing the clock distribution network are clock skew, jitter, power, area, slew rate. With advancement in technology, the systems tend to get bigger; as a result the delay on the clock wires cannot be ignored. Thus the problem of clock skew arises in a clock based system. Maximum difference in arrival times of clock signal to any 2 flip-flops fed by the network is known as clock skew. The speed of the clock distribution can be increased by decreasing the clock skew.

The factors that determine the clock skew in a synchronous digital system are as follows:

- The resistance, inductance and capacitance of the interconnection material used in the clock distribution network.
- The shape of the clock distribution network.
- Fabrication process variation over the area of the chip or the wafer.
- Number of processing elements in the digital system and the load presented by each module to the clock distribution network.
- Rise and fall times and the frequency of the clock signal.
- Buffering schemes and clock buffers used.

This clock skew causes designed (unavoidable) variations, process variation, temperature gradients, IR voltage drop in power supply. The clock skew affects the timing budget and needs to be considered for maximum (setup) and minimum (hold) path timings. The jitter produces clock network delay uncertainty. Maximum difference in phase of clock between any two periods is known as jitter. Jitter is caused by variations in clock period that result from phased-lock loop (PLL) oscillation frequency and various noise sources affecting clock generation and distribution. This effect can be reduced by minimizing power supply noise (IR and L*di/dt).

II. OVERVIEW OF EXISTING CM SIGNALING SCHEMES

There are two ways of current mode clock distribution. They are one to one signaling and many to one signaling schemes.

A. One-to-OneSignaling:

In a CM signalling scheme, a transmitter utilizes a voltage mode input signal to transmit a current with minimal voltage swing into an interconnect, while a receiver converts current to voltage providing a full swing output voltage. In current mode signalling scheme a CMOS inverter is used as transmitter and the transimpedance amplifier is used as receiver[3]. This type signalling provides delay improvement over voltage mode scheme, but the clock skew is large in clock distribution network [4]. The clock skew can be minimized by using H-tree clock distribution as suggested in [8]. The large skew problem is overcome by [6] where the dynamic over-driving technique is used but the mismatch in rise time and fall time arises. In [7] the variation-tolerant CM signalling schemes is used along with the current mode transmitter designed using bias circuitry to rectify the mismatch problem in the clock signal. In one to one current mode signaling the number of transmitter is equal to the receiver. It needs a receiver...
for each sink this increases the size of the circuit because which in turn increases the power.

B. One-to-Many Signaling:

In one-to-many current mode signalling scheme, a transmitter which is designed using NAND-NOR design and the current mode pulsed flip-flop (CMPFF) is used [5]. The number of flip-flop used for receiving the clock signal is proportional to the number of sinks. The advantage of one-to-many current mode signaling is the silicon area. The silicon area decreases when the number of sink increases since it uses one transmitter and many transmitters.

The current pulsed flip flop with enable (CMPFFE) [1] uses enable signal to avoid unwanted clock signal in the area of the processor where there is no need of clock signal. But the CMPFFE is a positive edge triggered flip flop and consumes more silicon area when compared to the one-to-one current mode signalling. The CMPFFE consumes more power compared to one to one current mode signalling scheme but the static current is reduced.

III. PROPOSED WORK

A low power current mode double edge triggered flip-flop (CMDETFF) is combined with the conditional gated transmitter to do the functions of clock distribution network. The overall block diagram of the system is shown in Fig. 2.

![Fig. 1. Internal block diagram of Proposed CMDETFF](image)

A. Conditional Gated Transmitter:

Fig. 3. Shows the circuit diagram of a conditional gated transmitter is used to produce the clock signal with constant pulse width. The conditional gated transmitter is designed by using Pass-transistor Logic (PTL). The conditional gated transmitter uses three nMOS transistor and an inverter. The clock signal is given as input to one terminal of the pass-transistor logic AND gate and the inverted clock signal is given as input to another terminal of the pass-transistor logic AND gate. The output of the pass-transistor logic AND gate is given as input to the Current Mode Double Edge Triggered Flip-Flop with enable (CMDETFF).

![Fig. 2. Block diagram of the proposed system](image)

![Fig. 3. conditional gated transmitter](image)
B. Proposed CMDTFF:

The proposed current mode double edge triggered flip-flop has two parts. They are

- Current pulse generator,
- Double edge triggered flip-flop.

The internal block diagram of the proposed CMDTFF is shown in Fig. 1.

1) Current Pulse Generator:

The current pulse generator uses a global reference voltage generator, current comparator and inverters. The global reference voltage generator is used to produce a reference current signal. The current comparator compares the current from the global reference voltage generator and the current from the transmitter to produce the current pulse. The circuit diagram of the current pulse generator is shown in Fig. 4. The current pulse is controlled by using EN signal which is given as input to the PMOS transistor PMOS_3 and NMOS transistor NMOS_5. The current pulse generated using the current comparator is amplified using the inverters. The current pulse obtained at the pin out1 is used to trigger the double edge triggered flip-flop.

2) Double Edge Triggered Flip Flop:

The double edge triggered flip-flop uses the current pulse and operates on both the edges of the clock signal. By using the double edge triggered flip-flop the clock frequency can be halved to achieve the same computational throughput compared to single edge triggered flip-flop. This results in overall system power reduction because clock distribution is a major source of power consumption in a synchronous computation system. The circuit diagram of the double edge triggered flip-flop is shown in Fig. 5. The clock signal generated by the current pulse generator is given as input to the CLK pin of the double edge triggered flip-flop. The transistor Mn5 and Mn4 receives the clock signal while the transmitter Mn1 receives the inverted clock signal. The data signal is given as input to the pin D and the data signal is passed through the transistor Mn1. The data

Fig. 4. Current pulse generator.

Fig. 5. Double edge triggered flip-flop.
value passed is inverted to obtain the output signal Q_b. This data signal passes through the transistor M_{p2} and M_{n3} to get the value of Q.

Fig. 6. Simulation waveforms confirm the internal current-to-voltage pulse generation (N1) that triggers input data capture.

IV. SIMULATION RESULT

The clock signal is given as input to transmitter which transmits the signal to the receiver. The current signal from the transmitter is given as input to the receiver. The current signal taken from the transmitter is compared with the current signal generated by the global voltage generator by using current comparator. The internal current-to-voltage pulse generation is done by the current comparator and that signal is amplified by using the inverters. This current-to-voltage pulse is denoted as N_1 in the output waveform shown in Fig. 6. The EN signal is used to control the clock signal which triggers the flip-flop. Here in the simulation waveform D is the data signal given to the flip-flop and the outputs are Q and Q_b.

V. RESULT AND DISCUSSION

We implemented the current mode pulsed flip-flop with enable(CMPFFE) and the proposed current mode double edge triggered flip-flop(CMDETFF) in 180nm technology. The TABLE I. shows that the area of the proposed CMDETFF is reduced when compared with the CMPFFE. The power delay product and static power has been reduced but the average power is increased when compared with the CMPFFE.

<table>
<thead>
<tr>
<th>Design name</th>
<th>Layout area(um²)</th>
<th>Number of transistors used</th>
<th>Static power (mw)</th>
<th>Average power (mw)</th>
<th>PDP (nj)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One to One CM CDN</td>
<td>1.19</td>
<td>19</td>
<td>2.99</td>
<td>1.47</td>
<td>215.56</td>
</tr>
<tr>
<td>CMPFFE</td>
<td>31.57</td>
<td>46</td>
<td>21.95</td>
<td>60.83</td>
<td>1097.31</td>
</tr>
<tr>
<td>Proposed CMDETFF</td>
<td>23.49</td>
<td>38</td>
<td>18.19</td>
<td>99.79</td>
<td>1.34</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

The conditional gated transmitter and the current mode double edge triggered flip-flop with enable (CMDETFF) is proposed. The proposed CMDETFF is 99.8% faster and consumes 64% more power when compared to a CMPFFE at 1MHz but the static power is reduced by 17.8%. The current mode clock distribution network using the CMDETFF enables 24% to 62% power reduction when compared to voltage mode clock distribution network. The symmetric H tree provides zero clock skew which is suitable for high speed applications. The clock distribution using flip-flop is used for one to many clock distribution. This also discards the use of complex current mode receiver.

VII. REFERENCES

