PHYCOCHEMICAL STUDIES ON MICROSPORA FLOCCOSA (VAUCHER), THURET ALGA COLLECTED FROM THE PONDS OF HYDERABAD, SINDH

Jamaluddin Mangi1*, Noor-ul-Ain Soomro1, Sarfraz A. Tunio2, A. Hayee Memon1, M. A. Kazi3 and A. Rauf Jamali1

1Institute of Plant Sciences, 2Institute of Microbiology and 3Institute of Biochemistry, University of Sindh Jamshoro, Pakistan, Email*: jamal.mangi@yahoo.com

Article received 4.10.2016; Revised 15.3.2017; Accepted 20.3.17

ABSTRACT

Microspora floccosa (vaucher) Thuret is a rich source of fibers, vitamins and proteins. Present study was conducted to analyze the fatty acids and sterol composition of the fresh water green alga Microspora floccosa present in semi-permanent ponds near Hyderabad Sindh. The acids were isolated and then converted into methyl esters. Subsequently they were identified by GC-MS, which revealed the presence of methyl undecylate, myristate, tridecylate, pentadecylate, palmitate, margarate stearate and nonadecylate among saturated and methyl pentadecatrienoate, hexadecatrienoate and heptadecylenate among unsaturated fatty acids. Besides above two sterols such as 24-methylcholesterol and cholesterol were also identified through EI-mass spectrometry and 1H-NMR spectroscopy.

Key words: Microspora floccosa, Fresh water algae, Chlorophycota

INTRODUCTION

Microspora floccosa (vaucher) Thuret is a fresh-water macroalgae belongs to family Microsporaceae and division Chlorophyta. Being an edible macroalgae, it is a rich source of fibers, vitamins and proteins. In addition to being used as a food source, M. floccosa may have a number of additional health benefits such as promoting appetite, rejuvenating, and remedy of many common ailments (Fahprathanchai et al., 2006). In previous studies, the extracts of M. floccosa were used to investigate toxicological effects in rates, no mortality or abnormality was observed up to sixty days. A range of parameters including body weight, hematology and blood biochemistry (alanine aminotransferase, ALT; aspartate aminotransferase, AST; blood urea nitrogen, BUN and creatinine, Cre) were investigated in control and treatment groups, which were recorded same in both groups (Fahprathanchai et al., 2006). Crude methanol extracts of M. floccosa have been demonstrated to exhibit a strong antimicrobial activity against a variety of bacterial and fungal species (Ghazala et al., 2010). The antimicrobial activity has been suggested to be due to sterols and triterpene compounds (Khalid et al., 2011). Several studies on taxonomy, Biogas production seasonal variation, nutritional properties, limnological studies and ecological survey of the freshwater green algae have been carried out (Leghari et al., 2000; Mehwish & Aliya, 2005; Kubra & Leghari, 2008; Ghazala et al., 2009; Adhoni et al., 2015; Tibbetts et al., 2015; Grass et al., 2016). The phycochemistry of the freshwater green algae is less investigated. In this regard, present study has been designed to unravel the phycochemistry of Microspora floccosa indigenous to Hyderabad Pakistan.

MATERIALS AND METHODS

Collection of Alga: The freshwater green alga Microspora floccosa (vauch) Thuret was collected from freshwater ponds, opposite to Rajputana Hospital Hyderabad, forming a thick mat floating over the surface of water in November 2011. The pH of the ponds was 7.9. It was brought to the Phycology Laboratory, Institute of Plant Sciences, University of Sindh, Jamshoro and thoroughly washed in tap water to remove the external material and was kept at room temperature for drying.

Isolation of fatty acids: The dried alga (98.08g) was kept for cold percolation for about 20 days in n-hexane: chloroform (1:1, v/v), which on evaporation under reduced pressure of rotary evaporator, afforded a dark green thick syrupy algal extract (1.02g). Out of this (0.75g) was saponified with 10 % KOH in 50% ethanol (EtOH) and refluxed at 100°C for six hours. After cooling, the saponified extract of EtOH was evaporated under vacuum and then clarified by partitioning with equal volumes of water and diethyl ether (Et2O). The experiment was run thrice time. The water solution was made slightly acidic using 6N HCl (pH5-6), after that it was extracted again using same volume of water and Et2O. The experiment was repeated thrice and completely associated Et2O phases were evaporated under reduced pressure, that has given out (0.35 g) of residual substance. At the same time 0.5mL ethereal diazomethane was introduced and the reaction mixture was kept at room temperature until unless it becomes soluble. The separated amount of aliq-
uots was then run into a gas-chromatograph mass spectrometer (GC-MS) and fatty acid methyl esters were determined. The GC-MS result of eight saturated and three unsaturated fatty acids methyl esters on the mass spectrometry basis is presented in Table 1.

Isolation of Sterols: The extraction of sterols in the form of dried thalli (225g) was left for separation in ethanol for the duration of 21 to 28 days. The separated amount of residue was further filtration using filter paper and concentrated under vacuum and that appeared as a bright green product. The residue was undergone through the solvent extraction of water and ethyl acetate and process was repeated thrice. The most of the combined ethyl acetate layers on volatile expenditure (1.75g) and a concentrated algal material was obtained which was further deposited onto silica gel column (70-230 mesh size) in the chromatographic technique. The portion of the residue was eluted in various solvents such as n-hexane, diethyl ether, chloroform and methanol based on their polarity by 2% for each of the solvents. The amount of residue which was eluted in n-hexane: diethyl ether 85:15 given out product of two sterols. i.e Cholesterol and 24-methyl cholesterol (fig.1). They were scrapped off as sterol bands by thin layer chromatography (TLC) plates developed in n-hexane: ether: acetic acid (85:15:0.8 v/v). The sterols were first detected under ultra violet (UV) lamp and then by spraying with CeSO₄ (Ceric sulphate).

RESULTS AND DISCUSSION

The microscopic examination of the collected alga indicated to be Microspora floccosa belonged to the family Microsporaceae, order Microsporales, Phylum Chlorophycota and the class is Ulvophyceae. The alga was identified after Prescott (1962) and revealed the following characteristics. Walls relatively thin, sections are not usually found in the region of the cell, cells in cylindrical shape or little bit seem swollen from 14-17 µ in diameter size, 22-29 (35) µ long chloroplast usually reticulate.

![Figure 1: Microspora floccosa (vaucher) Thuret](attachment:image1.png)

![Figure 2: (A) 24-Methyl Cholesterol, (B) Cholesterol](attachment:image2.png)

The detected ions in the mass spectra of their methyl esters are shown as under:

Methyl Undecylate GC-MS: m/z 200 (M⁺, C₁₂H₂₄O₂, 33%), 157 (M⁺-43, 28%), 153(M⁺-57, 14%), 143 (17%), 125 (42%), 111 (56%), 97 (49%), 83 (84%), 69 (41%), 55 (100%).

Myristate: m/z 242 (M⁺, C₁₅H₃₀O₂, 36%), 199 (M⁺-43, 73%), 185 (M⁺-57, 30%), 171 (8%), 157 (29%), 129 (53%), 115 (15%), 101 (54%), 83 (58%), 83 (58%), 71 (77%), 57(73%).

Tridecylate: m/z 228 (M⁺, C₁₄H₂₈O₂, 8%), 185 (M⁺-43, 14%), 171 (4%), 157 (12%), 143 (6%), 129 (7%), 115 (8%), 101 (52%), 87 (100%).

Pentadecylate: m/z 256 (M⁺, C₁₆H₃₂O₂, 100%), 213 (M⁺-43, 42%), 199 (M⁺-57, 8%), 185 (16%), 171 (18%), 157 (20%), 143 (8%), 129 (52%), 115(16%), 101(8%), 73 (100%).
Trimethyl-2, 6, 10-dodecatrienoate: m/z 250 (M\(^+\), C\(_{21}\)H\(_{32}\)O\(_2\);25%), 207 (M\(^+\)-43.5%), 193 (M\(^+\) 57.1%), 179 (10%), 165 (15%), 151 (5%), 137 (11%), 123 (17%), 109 (39%) 95 (33%), 81 (19%).

Hiragonate: m/z 264 (M\(^+\), C\(_{17}\)H\(_{30}\)O\(_2\); 80%), 221 (M\(^+\)-43,10%), 207 (M\(^+\)-57.5%), 193 (5%), 193 (5%), 179 (6%), 165 (7%), 151 (9%), 137 (20%), 123(35%), 109 (6%), 95 (64%), 81 (78%), 67 (43%).

Palmitate: m/z 270 (M\(^+\), C\(_{17}\)H\(_{34}\)O\(_2\); 8%), 227 (M\(^+\)-43, 47%), 213 (M\(^+\)-57, 6%), 199 (12%), 185 (16%), 171 (14%), 157 (15%), 143 (22%), 115 (8%), 101 (1%), 87 (100 %).

Heptadecanoate: m/z 282 (M\(^+\), C\(_{18}\)H\(_{34}\)O\(_2\); 207 (M\(^+\)-75,7%), 193 (12%), 179 (7%) 165 (9%), 151 (16%), 137 (21%), 123 (2%), 109 (6%), 95 (6%).

Margarate: m/z 284 (M\(^+\), C\(_{18}\)H\(_{36}\)O\(_2\);99%), 241 (M\(^+\)-43,36%), 227 (M\(^+\)-57,8%), 213 (4%), 199 (8%), 185 (27%), 171 (10%), 143 (6%), 129 (40%),115 (12%), 115 (12%), 101 (7%), 87 (10%), 78 (36%).

Sterate: m/z 298 (M\(^+\), C\(_{19}\)H\(_{44}\)O\(_2\); 36%), 225 (14%), 24 (11%), 227 (1%), 213 (8%), 199 (4%), 185 (9%), 171 (5%), 143 (11%), 129 (12%), 115 (10%), 101(6%), 87 (1%), 73 (2%).

Nonadecylate: m/z 312 (M\(^+\), C\(_{20}\)H\(_{40}\)O\(_2\); 24%) 269 (M\(^+\)-43,12%), 255 (M\(^+\)-57,4%), 241 (2%), 227 (5%), 213 (9%), 199 (5%), 185 (1%), 171 (1%), 157 (23%), 171(1%), 157 (23%), 143 (9%), 129 (4%), 115 (7%), 101 (64%), 78 (1%).

<table>
<thead>
<tr>
<th>Systematic name</th>
<th>Common name</th>
<th>Mol. Formula</th>
<th>Mol. Wt.</th>
<th>Rel. %age</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Undecanoate</td>
<td>Undecylate</td>
<td>C({12})H({24})O(_2)</td>
<td>200</td>
<td>2.49</td>
</tr>
<tr>
<td>n-Tetradecanoate</td>
<td>Myristate</td>
<td>C({15})H({30})O(_2)</td>
<td>242</td>
<td>10.19</td>
</tr>
<tr>
<td>n-Tridecanoate</td>
<td>Tridecylate</td>
<td>C({14})H({28})O(_2)</td>
<td>228</td>
<td>11.87</td>
</tr>
<tr>
<td>n-Pentadecanoate</td>
<td>Pentadecylate</td>
<td>C({16})H({32})O(_2)</td>
<td>256</td>
<td>12.74</td>
</tr>
<tr>
<td>n-Hexadecanoate</td>
<td>Palmitate</td>
<td>C({17})H({34})O(_2)</td>
<td>270</td>
<td>26.75</td>
</tr>
<tr>
<td>n-Heptadecanoate</td>
<td>Margarate</td>
<td>C({18})H({36})O(_2)</td>
<td>284</td>
<td>3.84</td>
</tr>
<tr>
<td>n-Octadecanoate</td>
<td>Stearate</td>
<td>C({19})H({38})O(_2)</td>
<td>298</td>
<td>4.00</td>
</tr>
<tr>
<td>n-Nonadecanoate</td>
<td>Nonadecylate</td>
<td>C({20})H({40})O(_2)</td>
<td>312</td>
<td>2.18</td>
</tr>
</tbody>
</table>

Unsaturated FA esters:

<table>
<thead>
<tr>
<th>FA esters</th>
<th>Mol. Wt.</th>
<th>Rel. %age</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,7,11-Trimethyl-2,6 10-dodecatrienoate</td>
<td>C({16})H({26})O(_2)</td>
<td>250</td>
</tr>
<tr>
<td>Hexadecatrienoate</td>
<td>Hiragonate</td>
<td>C({17})H({32})O(_2)</td>
</tr>
<tr>
<td>Heptadecatrienoate</td>
<td>Heptadecylate</td>
<td>C({18})H({34})O(_2)</td>
</tr>
</tbody>
</table>

Mol.Wt. = Molecular Weight Rel. %age = Relative Percentage.
Conclusions
The present study reports the phytochemical characterization of *M. floccosa*. The findings revealed that algae were enriched with number of saturated and unsaturated fatty acids. Moreover, sterols were also identified from the collected Alga.

REFERENCES

