COMPARISON OF ANTIMICROBIAL ACTIVITY OF FOUR HERBAL EXTRACTS AGAINST
STREPTOCOCCUS MUTANS, ISOLATED FROM DENTAL DISEASES IN VITRO

1Nebras N. Al- Dabbagh, 2 Ibitihal M. Abdul, 1Wissam Hamid Al- janabi. 1ira Abbas Obead

1Dentistry college and 2College science, Babylon University, Iraq
Nebras84@yahoo.com, ebitihalmuiz @ yahoo.com

ABSTRACT
The present study aims to evaluate the antimicrobial effects of four herbal extracts in Streptococcus mutans. These plants including Rhuscoriaria, Cinnamomum zelanicum, zingiber officinale, Camellia sinensis. Detection of antimicrobial activities of four methanolic herbal plants performed using agar diffusion method. After 24h of incubation the diameters of halos indicative of lack of growth in each well. The zone diameters around each disc were compared with chlorhexidine which is used as positive control. The study indicates methanolic concentration at (20%) have good potential activity on inhibition growth in Streptococcus mutans for C. zelanicum, Rcoriaria, Z. officinale, C. sinensis. (20.33, 17, 9.3, 8.2) respectively.

Key words: Streptococcus mutans, Methanolic aqueous extract, chlorhexidine, Rhuscoria- ria, Cinnamomum zelanicum, zingiber officinale, Camellia sinensis.

INTRODUCTION
Dental plaque, caries and pyorrhea continue to be a major health problem worldwide. (Marsh, 2003, Petersen, 2005, Allaker, 2009). Streptococcus mutans is the most cariogenic pathogen (Loesche et al., 1986) produces glycosyltransferases (GTFs), exopolysaccharide synthesis, adherence to tooth surface and biofilm formation (Koo et al., 2002 Marsh, 2005, Nisaa, et al., 2017)

Many side effects have been reported in chemical mouth rinses like Chlorhexidine such as undesirable tooth discoloration, unpleasant taste, dryness and burning sensation in the mouth (Jones, 2000, Mathur, 2011). Side effects observed such as oral mucosal ulceration, unilateral/bilateral parotid swelling and enhanced supra gingival calculus formation for long time using of chlorhexidine (Ernst et al., 1998, Parmanian et al., 2013).

Since ancient times, spices and herbs have also been used in traditional treatment of some diseases. Now-a-days, several experimental studies and to a lesser extent, clinical trials have also emphasized the role of herbs in the treatment of a variety of disorders. Rhuscoriaria L. was provided renewable bio-products with the following reported desirable bioactivities: Anti-fibrogenic, antifungal, anti-inflammatory, anti-malarial, antimicrobial, anti-mutagenic, antioxidant, anti-thrombin, anti-tumorigenic, anti-viral, cytotoxic, hypoglycemic, and leukopenic. (Loesche, 1986, Chopra et al., 1986, Grieve., 1984, Ahmad et al., 2017). For example, in plant herbs the tea has been demonstrated to inhibit tumor genesis in many animal models for different organ sites, including the lung, oral cavity, esophagus, stomach, small intestine, colon, skin, liver, pancreas, bladder, prostate, and mammary glands. Also shows effective inhibitory activity in the lung and skin (Yuan., 2011). While Cinnamomum zeylanicum exhibited various bio-regulatory activities such as antibacterial (Baratta et al., 1998, Bayoub, 2010), antifungal (Bhatia, 2012; Carmo et al., 2008, Jantan et al., 2008, Khan et al., 2009), Also Cinnamomum zeylanicum reduce incidence of various pathological conditions including reduction of Fasting Blood Glucose, increasing circulating insulin levels (Ransasinghe et al., 2012) reduced total cholesterol and triglycerides (Hassan et al., 2012) anti-ageing treatment (Tsuji-Naito, 2008). Moreover, it affords significant protection against Alzheimer’s disease (Senhaji, 2007). Zingiber officinale (Ginger) is like an antibiotic, antibacterial, antifungal (Ali et al., 2007, Giriraju Yunus et al., 2013) antioxidants, antimicrobial and other various medicinal values (Samir and Amrit 2003, Jalal and Nasroallah, 2014).

This study was conducted to show the antimicrobial effects of Methanolic- aqueous of four herbal plants against Streptococcus mutans.

MATERIALS AND METHODS
Microorganisms tested: Samples were collected from 50 samples, 20 males and 30 females between the age group of 18-50 years. Samples were collected from different private dental clinics. Samples collected by transported media (Amies transport medium). The sample was streaked on sterile Mitis – Salivarius Bacitracin agar (MSB Agar), the selective media for Streptococcus mutans. The plates were incubated under anaerobic conditions at 37°C for 24- 48 hours. Samples collected for the isolation of bacteria from Supraging val (n=35), Dental plaque caries (n= 15).
Preparation of plant extract: For preparation of plants extracts for all the four herbal plants were
prepared by dissolving 10 g of powder for each medicinal plant separately in 100 ml of (20 methanol +80 water). The contents were kept in an ice box and stirred by a magnetic stirrer for 48 h. Then the extract was filtered, and it is dried in hot air oven at 40°C. Then the extract was stored under refrigerator at 4°C.

Determination of antibacterial activity: The antibacterial susceptibility of prepared herbal extract against bacteria were evaluated by Agar well diffusion method. Loop full of freshly grown bacterial isolates were inoculated in nutrient broth incubated at 37°C for 24 hr. The bacterial suspensions were diluted with normal saline. Adjust the turbidity and compare with standard tube (McFarland number 0.5) to yield a uniform suspension containing 1.5×10⁶ CFU/ml and spread the suspension by cotton swab, streaking on Muller Hinton agar.

Media were cut into four wells (5 mm diameter) by cork borer and add 100µl of suspension (different concentrations) (the plates were performed in triplicates). All plates of the tested organisms were then allowed to incubate at 37°C for overnight. Reading the result by measuring the distance / inhibition zones around the wells. Concentrations of 10%, 15% and 20% were used to study the antibacterial activity of Methanolic aqueous herbal extracts.

RESULTS

The four-herbal extract showed some antibacterial activity against the selected Streptococcus mutants according to different concentration were measured by inhibition growth.

The antibacterial activity of Methanolic C. zelanicum were measured for six isolates of S. mutants showed inhibition zone at three concentrations (20.33mm) at concentration 20% compared to inhibition zone (17.7, 19.3) at concentration 10%, 15% respectively (table 1). Followed by the Methanolic-aqueous of R.coriaria showed antibacterial activity with inhibition zone (17mm) at concentration 20 %, While other inhibition zone (12.3mm, 15.3 mm) at concentration 10 %, 15% respectively (Table 2). Indeed, to Methanolic-aqueous Z. officinale and Methanolic aqueous C. Sinensis revealed just inhibition zone (9.3mm, 8.2 mm) at 20 % compared to no antibacterial activity were shown (0, 0% mm) at concentration 10 %, 15 % respectively (Table 3, and Table 4).

| Table 1: Antibacterial activity of Methanolic-aqueous C. zelanicum |
|-----------------|-----------------|-----------------|
Plant extract	Diameter of zones of inhibition (mm) Mean values		
C. zelanicum	10%	15%	20%
	17.7	19.3	20.33

| Table 2: Antibacterial activity of Methanolic-aqueous R. coriaria |
|-----------------|-----------------|-----------------|
Plant extract	Diameter of zones of inhibition (mm) Mean values		
R. coriaria	10%	15%	20%
	12.3	15.3	17

| Table 3: Antibacterial activity of Methanolic-aqueous Z. officinale |
|-----------------|-----------------|-----------------|
Plant extract	Diameter of zones of inhibition (mm) Mean values		
Z. officinale	10%	15%	20%
	0%	0%	9.3

| Table 4: Antibacterial activity of Methanolic-aqueous C. sinensis. |
|-----------------|-----------------|-----------------|
Plant extract	Diameter of zones of inhibition (mm) Mean values		
C. sinensis	10%	15%	20%
	0%	0%	8.2

All methanolic aqueous extracts demonstrated antibacterial activity against S. mutants in the agar–well diffusion method (Fig. 1).

![Fig. 1: Antibacterial activity of methanol aqueous of plants against streptococcus mutants (agar–well diffusion method) vertical column for concentration and horizontal column for inhibition diameter mean mm).](image)

The inhibition zones that obtained by the four herbal extracts toward the bacterial isolates were measured as a determination of inhibitory effects of these plants (significance) table 5.
Abstract

... The results indicated there is significant differences between C. zelanicum and Chlorhexidine at two cons. 15 % and 20 % and just in conc. 20% for R. coriaria. Where no significant difference in 10 %, and Chlorhexidine for C. zelanicum, 10, 15 % for R. coriaria. Although these cons. gave the antibacterial activity. While the significant differences in cons. 20% and chlorhexidine for both Z. officinale and C. sinensis.

DISCUSSION

Some studies indicate the important role of activity several mouth washes against oral bacteria especially chlorhexidine (Ciancio, 2000, Mozaffari et al., 2005, Autio, 2008, Fard et al., 2011, Rathand Sing, 2013). But side effects on oral tissues like dryness, tooth discoloration, uncomfortable taste and burning sensation (Sorna et al., 2011). Recent studies suggested to investigate the bioactive compounds as alternative natural mouthwash extracted from herbs to prevention of oral diseases (dental caries and periodontal disease) (Taheri et al., 2010, Palombo, 2011, Taheri et al., 2011) Antibacterial action of Methanolic aqueous extracts revealed different results may be due to differences in extract preparation methods C. zelanicum have broad antimicrobial activities due to bioactive phytochemicals such as polyphenols and volatile phenols. Besides to flavors and aromas characteristics (Muchuweti et al., 2007, Seyed et al., 2015). Voukeng et al., 2011 detected the presence the phenolic compounds in the methanolic extract of C. zelanicum act as antibacterial against MDR Gram–negative bacteria. Similar study indicated that aqueous extract of C. zelanicum at low conc. (50 mg/ ml) have good antibacterial agents against oral bacteria (Ghada Al-Dubonietal, 2013). In recent study, Elahe et al., (2016) suggested the effect of C. zelanicum as anti – biofilm formation by suppression genes which responsible for the initial adherence of S. mutants to tooth surfaces and formation of mature biofilm.

Secondly Sumac revealed antibacterial activity against S. mutans; Sumac extract was reported to be a source of natural antioxidants. A crude extract of R. coriaria exhibits interesting antioxidant properties, expressed by the capacity to either scavenge superoxide radical or uncompetitive inhibit xanthine oxidase (Candan and Sokmen, 2004). Sumac contains various substances, and exactly tannin and gallic acid may be responsible for the antioxidant ability of this plant (Hamid et al., 2014). OHara et al., (2004) carried out work on active components of ginger gingerols which one of characteristic of odor and flavor and antibacterial activity (Bisset, 1994, Marcello, 2001). Arash et al., (2015) showed that Z. officinale exhibit good antibacterial against Streptococcus mutants and Streptococcus sanguinis.

Shipra et al., (2012) evaluated in the research to the phytochemical compounds which screened the presence of alkaloid, phlobotannins, flavanoids, glycolsides, saponins, tannin and terpenoids in methanol extract which act as antibacterial against G-bacteria and G-bacteria. Purshotam and Pan-kaj (2011), study the active compound by phytochemical screening in methanol extract against Gram positive bacteria and Gram-negative bacteria. Several workers have revealed the antimicrobial action of black tea due to black tea contains high amounts of fluorides, 98 % of fluoride in the leaves (Cao et al., 2006, Malinowska et al., 2008) which is regards the potent anti-caries agent (Ramsay et al., (1975), Suyama et al., (2011). Also, other Antibacterial action of black tea due to presence catechins (sub group of flavonoids) (Kubo et al., 1992, Taylor et al., (2005), Groppo et al., (2007). Another study revealed the suppression level of amylase activity from S. mutants (Zang and Kashket, 1998, Haru and Honda, 1990). Finally, black tea protects from acid production from cariogenic bacteria due to bactericidal activity of EGCG (Song, 2007) which have influence effect on activity of lactate dehy drogenase (LDH) (Hirasawa et al., 2006).

Table 5: Antibacterial activity of methanolic aqueous extract against Streptococcus mutants. Inhibition zone diameters in mm Mean winey significant difference in comparison with chlorhexidine.

<table>
<thead>
<tr>
<th>Concentration %</th>
<th>C. zelanicum</th>
<th>R. coriaria</th>
<th>Z. officinale</th>
<th>C. sinensis</th>
<th>Chlorhexidine</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>17.7</td>
<td>12.3</td>
<td>0.0</td>
<td>0.0</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>B, b</td>
<td>C, c</td>
<td>D, d</td>
<td>D, d</td>
<td>A, a</td>
</tr>
<tr>
<td>15</td>
<td>19.3</td>
<td>15.3</td>
<td>0.0</td>
<td>0.0</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>B, a</td>
<td>C, c</td>
<td>D, d</td>
<td>D, d</td>
<td>A, a</td>
</tr>
<tr>
<td>20</td>
<td>20.3</td>
<td>17.0</td>
<td>9.3</td>
<td>8.2</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>B, a</td>
<td>C, a</td>
<td>D, a</td>
<td>D, a</td>
<td>A, a</td>
</tr>
</tbody>
</table>

Capital letters for comparison among herbal extract within the same concentration; Small letters for comparison among different concentration for the same herbal extract; Similar letters = no significant difference; Different letters= significant difference (A, a being the highest value)
Future studies to determine the effective components (aromatic or saturated organic compounds) which act as antimicrobial of these herbal extract.

Conclusion

The results exhibited Methanolic aqueous *C. zelanicum* exhibited highest inhibition zone especially with high concentration with three concentrations followed by *R. coriaria* than others herbal extracts. The study concludes that *C. zelanicum, R. coriaria, Z. officinale, C. sinensis* have anti-bacterial effects.

References

Giriraju A. and G.Y. Yunus, Assessment of antimicrobial potential of 10% ginger extract

Palombo E.A., Traditional Medicinal plant extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the

